

SP 01/07/91

NT 130/91

Cálculo Instantâneo de Velocidade Média Utilizando Calculadoras **Programáveis**

Eng.º Walter Ferreira dos Santos Eng.º Orlírio de Souza Tourinho Neto

Introdução

Em vias não saturadas, ou que apresentem períodos significativos de insaturação, por vezes é necessária a medição da velocidade média dos veículos, na ocorrência de altas velocidades, visando à obtenção de dados para regulamentação de velocidade, projetos de canalização do fluxo de tráfego, distribuição de velocidades por faixa de rolamento, projetos de segurança, etc. Nestas condições, o método do veículo teste não é o mais recomendado (altas velocidades) e nem sempre é possível dispor de equipamentos como radar, etc.

Este trabalho se propõe a apresentar um método prático, com obtenção instantâneas dos resultados, sendo portanto muito útil para avaliação em campo.

Metodologia

A velocidade média é medida entre seções da via, com distância conhecida, através do tempo de percurso dos veículos:

Velocidade =
$$\underline{\text{distância}}$$
 \rightarrow V (m/s) = $\underline{\text{d(m)}}$
Média tempo ts (s) (1)

A distância "d" será previamente fornecida e armazenada (sub-rotina 3).

O tempo será medido utilizando-se a sub-rotina 1, que consiste na contagem do tempo através de um loop que a cada passagem acrescenta ao contador (tm) uma unidade.

Porém, deverá ser determinado o número de vezes (n) que a máquina a ser programada executa o sub-rotina 1 por segundo, para se possa converter o tempo medido pela máquina (tm) em segundos (ts), pois:

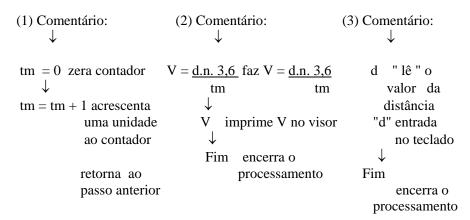
$$ts = \underline{tm}$$
 n (2)

Para isso cronometra-se a execução da sub-rotina 1 por um tempo determinado (ts = 30 segundo, por exemplo) e com o tempo medido pela máquina (tm) se faz:

$$N = \underline{tm}$$
ts (3)

n é característica própria de cada máquina, já que a velocidade de operação das calculadoras é variável em função da marca/modelo e fonte de energia que está sendo utilizada.

Substituindo-se (2) em (1):


$$V = \underline{d} \rightarrow V = \underline{d} \cdot n$$

Para converter a velocidade em m/s para km/h, multiplica-se por 3,6, assim:

$$V = \underline{d} \qquad x \quad n \quad x \quad 3,6 \quad (4)$$

que é o cálculo executado pela sub-rotina (2)

Fluxograma

Neste trabalho, como exemplo, este fluxograma será codificado na linguagem da calculadora programável TI - 58 C da Texas Instruments.

Programa

Calculadora Texas Instruments - TI - $58\ C$

Local	Sequência das Teclas	Código das Teclas
000	2 nd LB 1	76
001	A	11
002	0	00
003	STO	42
004	00	00
005	R/S	91
006	2 nd LB 1	76
007	В	12
008	1	01
009	SUM	44
010	00	00
011	B*	12

^{*} equivalente a GO TO B

Com o programa digitado até aqui determina-se o valor de n como segue:

Passo	Procedimento	Introduza	Pressione	Visor
1	Zera contador de tempo		A	0
2	Contagem de tempo		В	
3	Após 30 s exatos do passo 2		R/S	1.
4	Obtem-se o número de vezes que a sub-		RCL 00	N x 30
	rotina 1 foi executada em 30 s.			

Para a máquina utilizada aqui obteve-se:

$$N \times 30 = 146$$
 $n = 146 \over 30$

Substituindo n em (4):

$$V = \frac{d}{tm}$$
 $x = \frac{146}{30}$ $x = 3.6$ $V = \frac{17.52** .d}{tm}$

Continuando o programa:

Continuating of progr	turia.	
Local	Seqüência das Teclas	Código das Teclas
012	2 nd Lb 1	76
013	C	13
014	1**	01
015	7**	07
016	.**	93
017	5**	05
018	2**	02
019	X	65
020	RCL	43

_	_
_	11
_	11

021	01	01
022	÷	55
023	RCL	43
024	00	00
025	=	95
026	R/S	91
027	2 nd Lb 1	76
028	E	15
029	STO	42
030	01	01
031	R/S	91

^(**) Variável de máquina para máquina Operação

Exemplo para medição da velocidade de veículos ao percorrerem um trecho de 50m:

Passo	Procedimento	Introduza	Pressione	Visor
1	Informa distância do trecho	50	Е	50.
2	Prepara o programa		A	0.
3	Contagem do tempo (qdo. o veículo começar a percorrer o trecho)		В	
4	Encerra contagem do tempo (qdo. o		R/S	1.
	veículo acabar de percorrer o trecho)			
5	Calcula a velocidade		С	V

Para medições de outros carros, repete-se os passos de 2 a 5.

Sugestões

- Distância do trecho de 50 a 100m;
- Trechos aproximadamente retos; e
- Pesquisar em dia útil, de preferência às terças, quartas ou quintas-feiras.

Finalmente para que as medições sejam precisas é necessário que :

- O pesquisador tenha total visibilidade do início e fim do trecho;
- As seções de medição estejam situadas em um trecho de via no qual não seja encontrada qualquer interferência ou fator que altere a velocidade dos veículos (aproximações de semáforos, irregularidades, estreitamento de pistas, etc.).

Considerações Finais

O método proporciona a rápida medição das velocidades dos veículos em um trecho de via, sendo assim possível obter uma amostragem e a partir de então elaborar a devida análise estatística com o cálculo da média, desvio padrão, moda e etc.

Um histograma executado a partir destas amostras permitirá igualmente, visualizar a distribuição das velocidades, auxiliando deste modo na elaboração de projetos e procedimentos operacionais.

Eng.º Orlírio de Souza Tourinho Neto Eng.º Walter Ferreira dos Santos Gerência de Projetos Contratados - GPC